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Abstract
A Lie algebra g with a nondegenerate symmetric and invariant bilinear form is
called quadratic. A dipolarization in a Lie algebra g is the two polarizations
g± in g at a common linear form on g satisfying g = g+ + g−. In this paper, we
study dipolarizations in extended Heisenberg algebras, a subclass of quadratic
Lie algebras, and homogeneous parakähler manifolds associated with these
dipolarizations.

PACS numbers: 02.20.Sv, 02.40.Ma
Mathematics Subject Classification: 22E25, 53C25, 53C30

Introduction

A Lie algebra g with a nondegenerate symmetric and invariant bilinear form B is called a
quadratic Lie algebra and B is called the invariant scalar product on g. It is well known
that quadratic Lie algebras play a privileged role in physics. For example, Nappi and Witten
showed in [1] that a non-semisimple quadratic Lie algebra can be allowed for a Sugawara-
type construction. The construction in [1] was quickly generalized by Sfetsos [2] to Abelian
extensions of m-dimensional Euclidean algebras. In [3], Mohammedi spelled out that asking
for a Sugawara construction is equivalent to demanding that the Lie algebra possesses an
invariant scalar product. So it seems natural to investigate further the properties of quadratic
Lie algebras.

Let g be a Lie algebra over F (=R or C), g± be two subalgebras of g and f a linear form
on g. Kaneyuki [4], defines a dipolarization in g as a triple {g±, f } which satisfies some
conditions (cf definition 1.7). A dipolarization is called symmetric if the two subalgebras
g± are isomorphic to each other as Lie algebras. Otherwise it is called nonsymmetric. A
dipolarization {g±, f } in Lie algebra g is called trivial if g+ = g− = g and f = 0.
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Let g be a real Lie algebra and ρ an alternating 2-form on g. A weak dipolarization, more
generally, was introduced by Kaneyuki [4]. A triple {g±, ρ} is called a weak dipolarization in g,
if (1) g = g+ + g−, (2) ρ(x, g) = 0 if and only if x ∈ g+ ∩ g−, (3) ρ(g+, g+) = ρ(g−, g−) = 0
and (4) ρ([x, y], z) + ρ([y, z], x) + ρ([z, x], y) = 0, ∀x, y, z ∈ g. Clearly a dipolarization
{g±, f } is a weak dipolarization just by taking df as ρ. If g is semisimple, furthermore, weak
dipolarizations reduce to dipolarizations. A homogeneous parakähler structure is perfectly
described by a weak dipolarization (see [4]). A homogeneous parakähler manifold is, by
definition, a homogeneous symplectic manifold (of a Lie group G) which admits a pair of
transversal Lagrangian foliations (see [4]).

The notion of dipolarizations in Lie algebras is also closely related to that of polarizations
(see definition 1.6), which plays an important role in the theory of unitary representations of
Lie groups. Lemma 1.9 shows us a method to construct polarizations in Lie algebras.

In [4], Kaneyuki obtained a remarkable class of symmetric dipolarizations in real
semisimple Lie algebras by using gradations. Hou et al [5] gave the inductive classification
of polarizations on semisimple Lie algebras. So they [5] settled, in some sense, the
classification problem on homogeneous parakähler manifolds. The first example of
nonsymmetric dipolarization was given in [6]. Furthermore, [7] gave a large class of
nonsymmetric dipolarizations in solvable complete Lie algebras. In [8], we showed that there
exist dipolarizations in quadratic Lie algebras whose Cartan subalgebras consist of semisimple
elements and gave some general results on the classification of dipolarizations in quadratic
Lie algebras. We also determined all of the dipolarizations in four-dimensional extended
Heisenberg algebra and considered the homogeneous parakähler manifolds associated with
these dipolarizations.

In this paper, we construct six classes of dipolarizations in (2n+ 2)-dimensional extended
Heisenberg algebra and study the homogeneous parakähler manifolds associated with these
dipolarizations. We find two facts which are different from the case in semisimple Lie
algebras. The first one is that there exist nilpotent characteristic elements corresponding to
some symmetric or nonsymmetric dipolarizations in extended Heisenberg algebras. The other
one is that there exist symmetric and nonsymmetric dipolarizations in extended Heisenberg
algebras at the same time.

1. The definitions and some fundamental results

Definition 1.1 (cf [9]). Let M be a smooth symplectic manifold, if M admits two smooth
transversal Lagrangian foliations, then M is called a parakähler manifold.

Definition 1.2 (cf [10]). A parakähler manifold M is called homogeneous if the action of
G(M) on M is transitive, where G(M) is a (finite-dimensional) Lie group which consists of
all the diffeomorphisms of M preserving both the symplectic structure and the two foliations.

To describe homogeneous manifolds, it is natural to consider the algebraic conditions for
the existence of such a structure. In 1990, Kaneyuki considered this problem for homogeneous
parakähler manifolds. For this he introduced several new notions in Lie algebras.

Definition 1.3 (cf [4]). Let g be a Lie algebra over a field F, a triple {g+, g−, ρ} is called a
weak dipolarization in g, where g± are two subalgebras of g, ρ is an alternative 2-form on g,
and the following conditions are satisfied:

(1) g = g+ + g−,

(2) ρ(x, g) = 0 if and only if x ∈ g+ ∩ g−,
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(3) ρ(g+, g+) = ρ(g−, g−) = 0,
(4) ρ([x, y], z) + ρ([y, z], x) + ρ([z, x], y) = 0, ∀x, y, z ∈ g.

Lemma 1.4 ([11]). Let g be a Lie algebra over a field F and {g+, g−, ρ} be a weak
dipolarization in g. Then we have dimg+ = dimg−.

The following theorem is the main result of [4].

Theorem 1.5 ([4]). Let G be a (real) Lie group, H be a closed subgroup of G. Then there
exists a G-invariant parakähler structure on the coset G/H if and only if there exists a weak
dipolarization {g+, g−, ρ} in the Lie algebra g = Lie G, such that g+ ∩ g− = h = Lie H, and
the following two conditions are satisfied:

(∗) Ad(h)g± = g±, ∀h ∈ H,

(∗∗) ρ(Ad(h)x, Ad(h)y) = ρ(x, y), ∀x, y ∈ g, h ∈ H.

Remark. If H is connected then conditions (∗) and (∗∗) are not necessary.

Kaneyuki introduced another notion—dipolarizations in Lie algebras, which is simpler
but enough for many cases.

Definition 1.6 (cf [12]). Let g be a Lie algebra over a field F and f ∈ g∗ (dual of g). A
subalgebra p of g is called a polarization in g at f , if p satisfies:

(1) f ([p, p]) = 0,

(2) p is a maximal subspace satisfying (1). That is, if p′ is another subspace of g satisfying
p ⊂ p′ and f ([p′, p′]) = 0, then p = p′.

In general, we will denote polarization by a pair {p, f }.
Definition 1.7 (cf [4]). Let g be a Lie algebra over a field F. A triple {g+, g−, f } is called a
dipolarization (over F) in g, if the following conditions are satisfied:

(1) g+ and g− are two subalgebras of g and f is an F-linear form on g.
(2) Let h = g+ ∩ g−, then f ([X, g]) = 0 if and only if X ∈ h,

(3) f ([g+, g+]) = f ([g−, g−]) = 0,
(4) g = g+ + g−.

Remark. Let {g+, g−, f } be a dipolarization in g. Define an alternative 2-form by
ρ(x, y) = f ([x, y]). Then it is easily seen that {g+, g−, ρ} is a weak dipolarization in g.

On the other hand, if g is a semisimple Lie algebra over C or R, then any weak dipolarization
in g can be induced from a dipolarization in the manner given above. This is because the
Killing form is nondegenerate.

Combining lemma 1.4 with the above remark, we have

Corollary 1.8 ([11]). Let {g+, g−, f } be a dipolarization in a Lie algebra g. Then
dimg+ = dimg−.

A dipolarization {g+, g−, f } is called symmetric if g+ is isomorphic to g− as a Lie algebra.
Otherwise it is called nonsymmetric. It is called trivial if g+ = g− = g and f = 0.

The relation of polarizations and dipolarizations in Lie algebras is as the following:

Lemma 1.9 ([5]). Let g be a Lie algebra over a field F. Then {g+, g−, f } is a dipolarization
in g if and only if
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(1) {g+, f } and {g−, f } are two polarizations in g, and
(2) g = g+ + g−.

Definition 1.10. A Lie algebra g with a nondegenerate symmetric and invariant bilinear form
B is called a quadratic Lie algebra.

Now we generalize the concept of characteristic element (cf [10]) to the quadratic Lie
algebras endowed with dipolarizations.

Definition 1.11. Let (g, B) be a quadratic Lie algebra with invariant scalar product B over
F, and let {g±, f } be a dipolarization in g. Then there exists a unique element z such that

B(z, x) = f (x) x ∈ g.

Then we call z the characteristic element of the dipolarization {g±, f }.
In view of the above definition, we often say a dipolarization {g±, z} instead of {g±, f }.

In the same way one can define the characteristic element of a polarization in g.

Lemma 1.12. Let (g, B) be a quadratic Lie algebra with invariant scalar product B over F,
and let f (x) = B(z, x) (z �= 0 ∈ g) for any x ∈ g. Then gf = {x ∈ g : f ([x, g]) = 0}
coincides with the centralizer Cg(z) of z in g.

Proof. Noting the invariance and nondegeneracy of B, we have that

x ∈ gf

⇐⇒ f ([x, g]) = B(z, [x, g]) = 0

⇐⇒ B([z, x], g) = 0 ⇐⇒ [z, x] = 0 ⇐⇒ x ∈ Cg(z).

This concludes the assertion. �

2. Dipolarizations in extended Heisenberg algebras

Let

g = Ft ⊕
n∑

i=1

Fei ⊕
n∑

i=1

Fεi ⊕ Fc (F = C or R)

as vector spaces. Define Lie bracket on g by setting

[t, ei] = ei [t, εi] = −εi [ei, εj ] = δij c (i, j = 1, 2, . . . , n)

and bilinear form on g by

B(t, c) = 1 B(ei, εj ) = δij .

Then g is a solvable quadratic Lie algebra with a Cartan subalgebra h = Ft+̇Fc which consists
of semisimple elements. We call it extended Heisenberg algebra.

In [8], we showed that there exist dipolarizations in quadratic Lie algebras whose
Cartan subalgebras consist of semisimple elements. Particularly, we determined all of the
dipolarizations in four-dimensional extended Heisenberg algebra and studied the homogeneous
parakähler manifolds associated with these dipolarizations. In this section, we construct six
classes of nontrivial dipolarizations in general extended Heisenberg algebras.

Let g0 = F
(
t +

∑n
i=1 λiei +

∑n
j=1 µjεj

)
, g1 = ∑n

i=1 Fei , g2 = ∑n
i=1 Fεi , g1k =∑

i �=k Fei (1 � k � n), g2k = ∑
i �=k Fεi (1 � k � n), g1S = ∑

i∈S Fei , g1S = ∑
i∈S

Fei ,
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Table 1. The dipolarizations in general extended Heisenberg algebras.

g+ g− U

(1) g0 ⊕ Fc ⊕ g1 g0 ⊕ Fc ⊕ g2 U0

(2) g1 ⊕ g2k ⊕ Fc ⊕ F(t + µεk) g1 ⊕ g2k ⊕ Fc ⊕ F(t + µ′εk) U1k

(3) g1k ⊕ g2 ⊕ Fc ⊕ F(t + µek) g1k ⊕ g2 ⊕ Fc ⊕ F(t + µ′ek) U2k

(4) g0 ⊕ g1S ⊕ g2S ⊕ Fc g0 ⊕ g1S ⊕ g2S ⊕ Fc U0

(5) g1 ⊕ g2k ⊕ Fc ⊕ F(t + µεk) g1 ⊕ g2 ⊕ Fc U1k

(6) g1k ⊕ g2 ⊕ Fc ⊕ F(t + µek) g1 ⊕ g2 ⊕ Fc U2k

g2S = ∑
i∈S Fεi and g2S = ∑

i∈S
Fεi be the subspaces of g, where S is a subset of {1, 2, . . . , n}

and S the complementary to S in {1, 2, . . . , n}, λi, µj ∈ R.
Let U0 = {

z | z = t1t + t2c + t1
∑n

i=1 λiei + t1
∑n

j=1 µjεj , t1 �= 0
}
,U1k = {z | z =

t1ek + t2c, t1 �= 0} (1 � k � n), U2k = {z | z = t1εk + t2c, t1 �= 0} (1 � k � n).

By a straightforward calculation, we get the above six classes of nontrivial dipolarizations
in general extended Heisenberg algebras in table 1. In table 1, U denotes the set of the
characteristic elements of a polarization in g, µ,µ′ ∈ R and µ �= µ′.

We give the proof only to (1). Clearly g+ = g0 ⊕ Fc ⊕ g1 and g− = g0 ⊕ Fc ⊕ g2 are
two subalgebras of g and g = g+ + g−,

h = g+ ∩ g− = F


t +

n∑
i=1

λiei +
n∑

j=1

µjεj


⊕ Fc

[g+, g+] =
n∑

k=1

F(ek − µkc) [g−, g−] =
n∑

k=1

F(εk − λkc).

Let fz(x) = B(z, x) (z ∈ U0) for any x ∈ g. Then fz([g+, g+]) = fz([g−, g−]) = 0. Let
x = xt t + xcc + +

∑n
i=1 liei +

∑n
j=1 mjεj be any element in g and z = t1t + t2c + t1

∑n
i=1 λiei +

t1
∑n

j=1 µjεj ∈ U0 (t1 �= 0). Then

[z, x] = t1

n∑
i=1

(li − xtλi)ei + t1

n∑
j=1

(xtµj − mj)εj + t1

n∑
i=1

(λimi − liµi)c = 0

⇐⇒ li = xtλi,mj = xtµj ⇐⇒ x ∈ g+ ∩ g−.

By lemma 1.12, we have gfz = g+ ∩ g−. So {g+, g−, fz} is a dipolarization in g.

Remark. The elements of U0 are semisimple, the elements of U1 and U2 are nilpotent. So there
exist nilpotent characteristic elements corresponding to some symmetric or nonsymmetric
dipolarizations in extended Heisenberg algebras.

Lemma 2.1. Let h1k(µ) = g1k ⊕g2 ⊕Fc ⊕F(t + µek), h2k(µ) = g1 ⊕g2k ⊕Fc ⊕F(t + µεk),

h1 = g0 ⊕ Fc ⊕ g1, h2 = g0 ⊕ Fc ⊕ g2, h3 = g0 ⊕ g1S ⊕ g2S ⊕ Fc, h4 = g0 ⊕ g1S ⊕ g2S ⊕ Fc

and h5 = g1 ⊕ g2 ⊕ Fc. Then we have h1k(µ) � h1k(µ
′), h2k(µ) � h2k(µ

′), h1 � h2, h3 � h4

but h1k(µ) �� h5, h2k(µ) �� h5 (as Lie algebras).

Proof. Let φ be a linear mapping from h2k(0) to h2k(µ) (µ �= 0) such that φ(t) = t + µεk,
φ(ei) = ei + εk − µc (i �= k), φ(ek) = ek − µc, φ(εj ) = εj (j �= k) and φ(c) = c. Then
φ is a isomorphism from h2k(0) to h2k(µ) (µ �= 0) as Lie algebras. So h2k(µ) � h2k(0) for
any µ �= 0. Similarly, one may show that h1k(λ) � h1k(λ

′), h1 � h2, h3 � h4. Since h5 is
nilpotent but h1k(µ) and h2k(µ) are not, h1k(µ) �� h5, h2k(µ) �� h5. �
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Proposition 2.2. The dipolarizations (1)–(4) in the above table are symmetric. The
dipolarizations (5) and (6) in the above table are nonsymmetric.

Proof. It is easy to get by lemma 2.1. �

3. Parakähler manifolds associated with the dipolarizations in extended Heisenberg
algebra

Let g = Rt ⊕ Rc ⊕ Re1 ⊕ · · · ⊕ Ren ⊕ Rε1 ⊕ · · · ⊕ Rεn be the real quadratic (2n + 2)-
dimensional extended Heisenberg algebra with the invariant scalar product B, where
B(t, c) = 1, B(ei, εj ) = δij (i, j = 1, 2, . . . , n).

By a straight calculation, we get the matrix realization of g by setting

t =




1 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 1




e1 =




0 1 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 0




,

e2 =




0 0 1 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 0




, . . . , en =




0 0 0 · · · 1 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 0




,

ε1 =




0 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 0




, ε2 =




0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 1
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 0




, . . . ,

εn =




0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1
0 0 0 · · · 0 0




, c =




0 0 0 · · · 0 1
0 0 0 · · · 0 0
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 0




.

Then g is formed by the following matrices:


λ x1 x2 · · · xn z

0 0 0 · · · 0 y1

0 0 0 · · · 0 y2

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 yn

0 0 0 · · · 0 λ




xi, yj , z, λ ∈ R
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and the connected Lie group G with this Lie algebra g is formed by the matrices


λ a1 a2 · · · an µ

0 1 0 · · · 0 b1

0 0 1 · · · 0 b2

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 bn

0 0 0 · · · 0 λ




ai, bj ∈ R, λ > 0.

Let

G1 =







λ λ1(λ − 1) λ2(λ − 1) · · · λn(λ − 1) µ

0 1 0 · · · 0 µ1(λ − 1)

0 0 1 · · · 0 µ2(λ − 1)

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 µn(λ − 1)

0 0 0 · · · 0 λ







where λ > 0, µ ∈ R;

G1k =







1 a1 · · · an µ

0 1 · · · 0 b1

· · · · · · · · · · · · · · ·
0 0 · · · 0 bk−1

0 0 · · · 0 0
0 0 · · · 0 bk+1

· · · · · · · · · · · · · · ·
0 0 · · · 1 bn

0 0 · · · 0 1







G2k =







1 a1 · · · ak−1 0 ak+1 · · · an µ

0 1 · · · 0 0 0 · · · 0 b1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 1 bn

0 0 · · · 0 0 0 · · · 0 1







where ai, bj , µ ∈ R, 1 � k � n.
Clearly G1,G1k,G2k (1 � k � n) are closed subgroups of G. It is easy to check that

Lie G1 = g0 ⊕ Rc, Lie G1k = g0 ⊕ g2k ⊕ Rc and Lie G2k = g1k ⊕ g2 ⊕ Rc (1 � k � n).

Proposition 3.1. Let G,G1,G1k,G2k (1 � k � n) and g be as above. Then G/G1,G/G1k,

G/G2k have the structure of a parakähler coset space.

Proof. We prove the assertion only for G/G1. One can prove the other cases similarly. Let
{g±, f } be the dipolarization (1) in g as in table 1. That is

g+ = g0 ⊕ g1 ⊕ Rc g− = g0 ⊕ g2 ⊕ Rc

and f (em) = µmf (c), f (εm) = λmf (c) (1 � m � n), f (c) �= 0. Let ρ(x, y) = f ([x, y])
for any x, y ∈ g. Then {g±, ρ} is a weak dipolarization in g and g+ ∩g− = g0 ⊕Rc = Lie G1.
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Let

h =




λ λ1(λ − 1) λ2(λ − 1) · · · λn(λ − 1) µ

0 1 0 · · · 0 µ1(λ − 1)

0 0 1 · · · 0 µ2(λ − 1)

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 µn(λ − 1)

0 0 0 · · · 0 λ




∈ G1.

By a straight calculation, we have

Ad(h)em = λem + µm(1 − λ)c Ad(h)εm = λ−1εm + (1 − λ−1)λmc

Ad(h)


t +

n∑
i=1

λiei +
n∑

j=1

µjεj


 =


t +

n∑
i=1

λiei +
n∑

j=1

µjεj


 +

(
n∑

i=1

λiµi

)
c

Ad(h)c = c.

Hence Ad(h)(g±) ⊆ g± for any h ∈ G1.
On the other hand, for any

x = xt


t +

n∑
i=1

λiei +
n∑

j=1

µjεj


 + xcc +

n∑
i=1

x1iei +
n∑

j=1

x2j εj ∈ g

y = yt


t +

n∑
i=1

λiei +
n∑

j=1

µjεj


 + ycc +

n∑
i=1

y1iei +
n∑

j=1

y2j εj ∈ g

we have

Ad(h)x = xt


t +

n∑
i=1

λiei +
n∑

j=1

µjεj


 + λ

n∑
i=1

x1iei + λ−1
n∑

j=1

x2j εj

+


xc + xt

n∑
i=1

λiµi + (1 − λ)

n∑
i=1

µix1i + (1 − λ−1)

n∑
j=1

λjx2j


 c

Ad(h)y = yt


t +

n∑
i=1

λiei +
n∑

j=1

µjεj


 + λ

n∑
i=1

y1iei + λ−1
n∑

j=1

y2j εj

+


yc + yt

n∑
i=1

λiµi + (1 − λ)

n∑
i=1

µiy1i + (1 − λ−1)

n∑
j=1

λjy2j


 c.

So

[x, y] = xt

(
n∑

i=1

y1iei −
(

n∑
i=1

µiy1i

)
c

)
− yt

(
n∑

i=1

x1iei −
(

n∑
i=1

µix1i

)
c

)

+ xt

(
−

n∑
i=1

y2iεi +

(
n∑

i=1

λiy2i

)
c

)
+ yt

(
n∑

i=1

x2iεi −
(

n∑
i=1

λix2i

)
c

)

+
n∑

i=1

(x1iy2i − x2iy1i)c
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[Ad(h)x, Ad(h)y] = λxt

(
n∑

i=1

y1iei −
(

n∑
i=1

µiy1i

)
c

)
− λyt

(
n∑

i=1

x1iei −
(

n∑
i=1

µix1i

)
c

)

+ λ−1xt

(
−

n∑
i=1

y2iεi +

(
n∑

i=1

λiy2i

)
c

)
+ λ−1yt

(
n∑

i=1

x2iεi −
(

n∑
i=1

λix2i

)
c

)

+
n∑

i=1

(x1iy2i − x2iy1i)c.

Thus

ρ(Ad(h)x, Ad(h)y) = f ([Ad(h)x, Ad(h)y]) =
n∑

i=1

(x1iy2i − x2iy1i)f (c)

ρ(x, y) = f ([x, y]) =
n∑

i=1

(x1iy2i − x2iy1i)f (c).

So ρ(Ad(h)x, Ad(h)y) = ρ(x, y) for any h ∈ G1. By theorem 1.5, G/G1 has the structure
of a parakähler coset space. �
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